- *25% of all trauma deaths - **★50%** of all deaths from MVC - *200,000 people in the US live with the disability caused by these injuries ## **Basic Anatomy** - *Scalp - *Skull - ***** Meninges - *Dura Mater - *Arachnoid *Pia Mater - *Brain Tissue - ***CSF and Blood** # Basic Anatomy - Scalp - ***** Very Vascular - *Bleeds Freely *Vessels - vessels suspended in inelastic tissue - *As a result, vasospasms are limited # **Basic Anatomy - Skull** - *Like a closed box - *Only opening is the foramen magnum - * Rigid structure protects and contributes to several injury mechanisms # **Basic Anatomy - Meninges** IA MATER "SOFT MOTHER" ARACHNOID MEMBRANE URA MATER "TOUGH MOTHER" #### Intracranial Volume *80% Brain Matter *10% Blood *10% **CSF** #### Intracranial Volume - *Volume is Fixed at 100% - If more of one thing is added, then something else must go. - *This is called autoregulation *Monroe-Kellie Doctrine # Mechanisms of Injury - ***3** Collisions - *Car hits object - *Head hits windshield - *Brain hits inside of skull # Mechanisms of Injury # Mechanisms of Injury - *Brain movement inside the skull - *Base of skull is very rough - *Most brain movement is at the top - *Brain suspended by vessels and brain tissue that can be torn by movement, especially at the base # Response to Injury - *Due to increased blood volume (not edema) - *Natural response to injury anywhere on your body - *Body rushes nutrients to heal injured area # **Penetrating Mechanism** - *Increase in blood volume exerts pressure on the brain tissue - *This eventually decreases blood flow to the uninjured part of the brain ### Response to Injury - *Increase in cerebral edema (water) develops after 24-48 hours and peaks in 3-5 days - *Not an acute concern, per say # Response to Injury - **★CO2** levels in the blood have a critical effect on cerebral blood vessels - **★CO2** is produced by hypoxic cells - **★CO2** is a very potent vasodilator - *What would happen if CO2 levels were increased? Decreased? #### CO₂ Levels - *Normal CO2 is in the range of 35-45 mm/hg (torr) - *Mean CO2 level is 40 torr. - *How would you get rid of CO2? - *What would happen if you got rid of too much? #### Review - *Two main factors that increase intracranial volume are: - *Vasodilation (immediately) - *Cerebral edema (24-48 hrs) #### Autoregulation - *The brain had the ability to control its environment - *As long as there is adequate perfusion ### **Autoregulation** ### **Autoregulation** - *A rapid increase in intracranial volume cannot be compensated for by the small amount of area occupied by CSF - *This condition could be rapidly catastrophic #### Intracranial Pressure - *The pressure of the brain contents within the skull is intracranial pressure (ICP) - *The pressure of the blood flowing through the brain is referred to as the cerebral perfusion pressure (CPP) - *The pressure of the blood in the body is the mean arterial pressure (MAP) #### Intracranial Pressure *MAP (Mean Arterial Pressure) can be determined by a simple formula: MAP = systolic + 2x diastolic 3 #### Intracranial Pressure *Example of MAP ***B/P** is 120/80 #### Intracranial Pressure - Intracranial pressure (ICP)is measured by a device that is implanted through the skull by a surgeon - *The normal value for ICP is 0 10 mm/hg #### Intracranial Pressure *Cerebral Perfusion Pressure (CPP) can be determined by the following formula: CPP = MAP - ICP *Normal CPP range is 60 - 150 for autoregulation to work well! #### Intracranial Pressure *Example of CPP ***Blood Pressure is 140/80** ***ICP** is 30 CPP = 100 - 30 = 70 mm/hg Is this enough for autoregulation? What would happen if the ICP was 80? # **Assessment Findings** *Increased ICP *Hypoxia is a common cause of increased ICP that can be overlooked # **Assessment Findings** - ***LOC Changes** - *Confusion - *Lethargy - * Disorientation - *Restlessness - *Apathy - *Agitation / combativeness - * Motor response #### **Assessment Findings** - *Pupillary Changes - * Irregular shaped - *Equality? - *Constricted? - * Dilated? - *Vision Problems? ### **Assessment Findings** #### ***Vital Signs** - ***VS** do not change much until late in the ICP process - ***VS** changes indicate uncompensated compression to the brain stem - *Rule out other factors that alter VS - *SHOCK! ## **Assessment Findings** - *Cushing's Triad - *hypertension - *bradycardia - *altered respirations *LATE SIGN! - *Why do we get into Cushing's Triad? ## **Assessment Findings** - * Head injured patient is combative with a B/P of 110/70, P=90, RR=18 - *What is the MAP? - **¥** Is it in the normal range? ### **Assessment Findings** - *After 10 minutes: - *B/P is 140/70 - *Pulse is 90 - *Pt is still combative. - *Now what is the MAP? - *Explain the change ### **Assessment Findings** *As ICP rises, autoregulation increases the MAP (by raising the BP) to maintain an adequate cerebral perfusion pressure # **Assessment Findings** *Understanding what the brain is trying to do, consider the "classic" increased ICP vital signs: Widening pulse pressure: 250/130 Bradycardia: HR = 40 **Abnormal Respirs: Cheyne Stokes** # **Assessment Findings** *BP of 250/130 *MAP would be 170! *Why is the MAP so high? *"The ICP is 100!" *Is this a good thing? *Should we lower the blood pressure? # **Assessment Findings** | | Eye Opening | | |---------------------------|---|---| | Spontaneous | | 4 | | To verbal command | | 3 | | To pain | | 2 | | No respo | onse | 1 | | | Verbal Response | | | Oriented and converses | | 5 | | Disoriented and converses | | 4 | | Inappropriate words | | 3 | | Incomprehensible sounds | | 2 | | No response | | 1 | | | Motor Response | F | | Obeys verbal commands | | 6 | | Localizes pain | | 5 | | Withdra | ws from pain (flexion) | 4 | | Lane, 2003 ¹⁰ | Prospective study of prehospital providers (EMTs,
RNs) to determine the effect of instructional video
training on GCS scoring ability using 4 prepared
case scenarios. | I Training in GCS scoring using a video resulter
significantly improved scoring results. | # Management of ICP *Accomplished by maintaining PaO2, PaCO2, pH and specified levels # Management of ICP - *Maintain a good pulmonary "toilet" - ***Limit suctioning to < 15 seconds** - *Hyperventilate before and after - *Limit to one or two passes # Management of ICP - *pH Changes - *as pH decreases (acidosis) ICP increases - *as pH increases (alkalosis) seizure threshold is lowered - *seizures dramatically increase ICP! #### Management of ICP - ***BVM Ventilation** - *100% Oxygen - ***Can correct acute** increases in ICP in a little as 2-3 minutes # Management of ICP - *Oxygenation *If PaO2 drops - below 50 it will cause an increase in cerebral blood flow - increasing # Management of ICP - *Hyperventilation? - *Removes CO2 - ***CO2 Causes** vasodilation - * Vasodilation increase blood volume in brain - *This increases ICP # Management of ICP - * Hyperventilation? - *How much? - *How fast? - *Can we do too much? - *Can we do too little? # Management of ICP *Over doing the hyperventilation can reduce the CO2 levels to where there is severely constricted vessels to the brain, causing ischemia and further edema. *Capnography should be the standard to guide ventilation #### ICP Precautions - **≭Positional Changes ≭Laying flat increases ICP** - *elevate backboard at head 15-30 degrees #### **ICP Precautions** - *Hip flexion decreases venous return and increases ICP - *Coughing and valsalva increase ICP - ***Body temperature** - *Too high causes increases metabolism = ICP - *Too low causes shivering = ICP #### ICP Precautions *Head and neck in neutral position. Anything else will flatten jugular veins and inhibit venous return that leads to ICP #### **ICP Precautions** - Proper sizing of the C-Collar helps maintain neutral position - *Padding 2-4 cm behind the head on a LSB is needed on most adults to achieve neutral #### ICP Precautions - Intubation precautions - *Pre-medicate with Lidocaine, 1mg/kg IV 2 minutes prior to attempt - *Laryngoscopy produces an ICP Spike (CN IX) #### ICP Precautions - *Speaking of ET Tubes: - *Avoid using any circumferential device to secure tube - *Occludes jugular veins - increases ICP ### **Never Stop Learning** - Intubation, and other skills in head injured persons are important. - *They are also dangerous - *Practice your sequences and procedures #### ICP Precautions - *Environment - *External stimuli can increase ICP - *If possible, avoid loud sounds and bright lights #### ICP Precautions - *"Better Living through Chemistry" - *Sedation -Neurologists hate it, but great for reducing ICP - *Fentanyl is a good choice as is Versed #### **ICP Precautions** - *Paralytics (RSI) - *Decreases metabolic requirements - **≭**Use with sedation! - *Can mask seizures unseen increased ICP - *Dilantin, Valium, others #### Initial Resuscitation ... RSI *Although a neuromuscular blockade would make our job easier in the field... - * patients who receive these medications: - * longer ICU stays - *increased risk of sepsis - *higher rate of pneumonia - *no improvement in outcome #### ICP Precautions - * Diuretics - *Decrease ICP by removing fluids - *May decrease MAP and CPP - * Mannitol osmosis *Intermittent bolus, not continuous infusion - *Lasix loop #### ICP Precautions - *Fluid selection - *Isotonic Crystalloid *Normal Saline or LR - *Avoid sugar containing or hypotonic solutions like D5W - **★Maintain normal MAP** with bolus therapy #### ICP Precautions - *Steroids - *Decadron, Solumedrol - * "No proven benefit in traumatic head injury" - *Some benefit in spinal trauma # **Summary - ICP Precautions** ***BLS** - *Neutral Position - *BVM with 100% O2 - *Properly size Ccollar / padding - *Protect airway - *Elevate head of backboard - *ALS - ***Secure airway** - *Pre-medicate with Lidocaine - *Secure tube on one side only - * Maintain MAP/CPP - ***** Consider sedation #### In the End... Never let a head injured patient get