Network Systems Science & Advanced Computing Biocomplexity Institute & Initiative University of Virginia

Foresight and Analysis of Infectious Disease Threats to Virginia's Public Health

August 10th, 2023

(data current to July 29th – Aug 8th) Biocomplexity Institute Technical report: TR BI-2023-233

MUNIVERSITY of VIRGINIA

BIOCOMPLEXITY INSTITUTE

biocomplexity.virginia.edu

About Us

- Biocomplexity Institute at the University of Virginia
 - Using big data and simulations to understand massively interactive systems and solve societal problems
- Over 20 years of crafting and analyzing infectious disease models
 - Pandemic response for Influenza, Ebola, Zika, and others

Points of Contact

Bryan Lewis brylew@virginia.edu

Srini Venkatramanan srini@virginia.edu

Madhav Marathe marathe@virginia.edu

Chris Barrett ChrisBarrett@virginia.edu

Model Development, Outbreak Analytics, and Delivery Team

Abhijin Adiga, Aniruddha Adiga, Hannah Baek, Chris Barrett, Parantapa Bhattacharya, Chen Chen, Da Qi Chen, Jiangzhuo Chen, Baltazar Espinoza, Galen Harrison, Stefan Hoops, Ben Hurt, Gursharn Kaur, Brian Klahn, Chris Kuhlman, Bryan Lewis, Dustin Machi, Madhav Marathe, Sifat Moon, Henning Mortveit, Mark Orr, Przemyslaw Porebski, SS Ravi, Erin Raymond, Samarth Swarup, Srinivasan Venkatramanan, Anil Vullikanti, Andrew Warren, Amanda Wilson, Dawen Xie

Overview

• **Goal**: Understand impact of current and emerging Infectious Disease threats to the Commonwealth of Virginia using modeling and analytics

• Approach:

- Provide analyses and summaries of current infectious disease threats
- Survey existing forecasts and trends in these threats
- Analyze and summarize the current situation and trends of these threats in the broader context of the US and world
- Provide broad overview of other emerging threats

Key Takeaways

- Upticks in cases and hospitalizations hint at a late summer wave
- Hospitalizations have increased ~12% in recent week from prolonged plateau
- Other indicators from wastewater, ED visits show sustained growth through July
- Genomic surveillance hinting at the possible role of EG.5

- <u>Literature review</u>: Recent publications using wastewater surveillance
- National modeling updates

COVID-19 Surveillance

Case Rates (per 100k)

Since December 2021

District Trajectories

Goal: Define epochs of a Health District's COVID-19 incidence to characterize the current trajectory

Method: Find recent peak and use hockey stick fit to find inflection point afterwards, then use this period's slope to define the trajectory

Hockey stick fit

Trajectory	Description	Weekly Case Rate Slope (per 100k)	Weekly Hosp Rate Slope (per 100k)
Declining	Sustained decreases following a recent peak	slope < -0.88/day	slope < -0.07/day
Plateau	Steady level with minimal trend up or down	-0.88/day < slope < 0.42/day	-0.07/day < slope < 0.07/day
Slow Growth	Sustained growth not rapid enough to be considered a Surge	0.42/day < slope < 2.45/day	0.07/day < slope < 0.21/day
In Surge	Currently experiencing sustained rapid and significant growth	2.45/day < slope	0.21/day < slope

District Case Trajectories – last 10 weeks

Statuc	Number of Districts			
Status	Current Week	Last Month		
Declining	0	(3)		
Plateau	8	(25)		
Slow Growth	24	(7)		
In Surge	3	(0)		

Curve shows smoothed case rate (per 100K) Trajectories of states in label & chart box Case Rate curve colored by Reproductive number

Nount Rogers - Plat

District Case Trajectories – Recent 6 months

BIOCOMPLEXITY INSTITUTE

District Hospital Trajectories – last 10 weeks

Statuc	Number of Districts			
Status	Current Week	Last Month		
Declining	0	(15)		
Plateau	5	(5)		
Slow Growth	9	(9)		
In Surge	21	(6)		

Curve shows smoothed hospitalization rate (per 100K) by district Hosp rate curve colored by R_e number

BIOCOMPLEXITY INSTITUTE

2023-07-23

COVID-19 Growth Metrics

Estimating Daily Reproductive Number – VDH report dates – EpiNow2 estimation

August 8th Estimates

Region	Reproductive number estimate	Confidence interval	Trend forecast
State-wide cases	1.10	0.73 - 1.7	Likely increasing
State-wide hosp	1.00	0.95 - 1.1	Likely increasing
Central	1.10	0.84 - 1.5	Likely increasing
Eastern	1.10	0.85 - 1.5	Likely increasing
Far SW	1.10	0.88 - 1.5	Likely increasing
Near SW	1.10	0.79 - 1.5	Likely increasing
Northern	1.10	0.81 - 1.4	Likely increasing
Northwest	1.10	0.87 - 1.4	Likely increasing

R_e from VDH Cases (last 6 months)

Methodology

- Time-varying reproduction number estimates on cases by estimated date of infection produced by EpiNow2 for R.
- Uncertainty is propagated from all inputs into the final parameter estimates, helping mitigate spurious findings.
- Sam Abbott, Joel Hellewell, Katharine Sherratt, Katelyn Gostic, Joe Hickson, Hamada S. Badr, Michael DeWitt, Robin Thompson, EpiForecasts, Sebastian Funk (2020). **EpiNow2**: Estimate Real-Time Case Counts and Time-Varying Epidemiological Parameters. doi:10.5281/zenodo.3957489.
- Note: Estimates based on past 6 months of data; most recent data point for hospitalizations is 10 days prior to that of cases (HHS hospitalization through 7/29/23 vs. VDH case data through 8/8/23).

EpiNow2 home: <u>https://epiforecasts.io/EpiNow2/</u>

VA Wastewater Data Update

Multiple sites in the Eastern region in the top two percentile groups

VDH COVID-19 Wastewater Surveillance

US Wastewater Monitoring

Wastewater provides a coarse estimate of COVID-19 levels in communities and can be a good indicator of activity levels

Increasing percent of sites in the higher trend categories

US Historic percentile of current detected levels over the past weeks

to 80%

%09

category

80% to 100%

40% to 60%

Percent of sites in each percent change category over time, United States*

20% or less

20% to 40%

0.5

0.4

0.3

0.2 ·

0.1

0.0

BIOCOMPLEXITY INSTITUTE

2023-06-29

2023-07-06

2023-07-13

2023-07-20

2023-07-27

2023-08-03

100%

more than

COVID-19 Severity Metrics

COVID-like Illness Activity

COVID-like Illness (CLI) gives a measure of COVID transmission in the community

- Emergency Dept (ED) based CLI is more correlated with case reporting
- Urgent Care (UC) is a leading indicator but may be influenced by testing for other URIs
- Beginning to see upticks in UC CLI(%) especially in Central and Eastern Regions

MIVERSITY & VIRGINIA

Diagnosed with COVID-19 in ED and UC visits

% of ED visits with Diagnosed COVID-19 showing sustained trend over the past month

https://www.vdh.virginia.gov/coronavirus/see-the-numbers/covid-19-data-insights/covid-like-illness-visits/

Source: VDH ESSENCE data as of 8/5/2023

Percentage of UC Visits for CLI in Virginia for the Past 3 Months

Source: VDH ESSENCE data as of 8/5/2023

MUNIVERSITY of VIRGINIA

Hospitalizations in VA by Age

Age distribution in hospitals relatively stable

- Pediatric hospitalizations level off after uptick last week
- Nearly 60% of hospitalizations are occurring in the 70+ population

Note: These data are lagged and based on HHS hospital reporting

Pediatric Hospitalizations by Age (0-17yo)

Data Source: Delphi and HHS

Wastewater, ED visits, and Test positivity

Weekly Emergency Department Visits by Age Group

End Date of MMWR Week

- All three signals show sustained growth trends since July 2023
- National testing volumes reported to CDC have shrunk from 275k/day (July 2022) to 30k/day

Weekly Emergency Department Visits by Age Group and Respiratory Illness, as a Percent of All Emergency Department Visits

Past projections – Hospitalizations

- Projections mostly tracked the plateau phase since March 10th
- Slight deviations noticeable from projections 5 months ago

Previous round – 22 weeks ago

Previous round –20 weeks ago

Virginia Daily Hospitalized - Comparison 2023-02-24

COVID-19 Spatial Epidemiology

ZIP Code level case rate per 100K over last four weeks

New cases per 100k in the last fortnight by ZIP code

- Statewide COVID19 case rates have grown since early July, but remain low relative to past surges.
- Divide rates by four to calculate average weekly incidence. Norfolk averaged 2,175 / 100k weekly cases.
- Nassawadox has finally dropped out of the top 10 after two months of being near number 1.
- Burkeville and Baskerville represent the prisoncontaining ZIP codes in this week's top 10.

ink	Zip Code	Name	Rate
1	23507	Norfolk	8,700
2	22572	Warsaw	7,870
3	23920	Brodnax	6,980
4	23922	Burkeville*	6,470
5	23890	Waverly	5,390
6	23942	Green Bay	4,730
7	24133	Patrick Springs	4,660
8	23418	Onley	4,360
9	23301	Accomac	4,050
10	23915	Baskerville*	3,190

Based on Spatial Empirical Bayes smoothed case rates, with an 8:1 ascertainment ratio, for four weeks ending 2023-08-08.

Case Rates by ZIP Code

IIII UNIVERSITY of VIRGINIA

BIOCOMPLEXITY INSTITUTE

Case Rate

High : 6000+

Risk of Exposure by Group Size and HCW prevalence

Case prevalence in the last four weeks by zip code used to calculate risk of encountering someone infected in a gathering of randomly selected people

- **Group Size**: Assumes **8 undetected infections** per confirmed case (ascertainment rate from recent seroprevalence survey) and shows minimum size of a group with a 50% chance an individual is infected by zip code (e.g., in a group of 30 in Norfolk, there is a 50% chance someone will be infected).
- HCW ratio: Case rate among health care workers (HCW) in the last four weeks using patient facing health care workers as the numerator / population's case prevalence. High HCW rates are found west of Richmond.

Current Hot-Spots

Case rates that are significantly different from neighboring areas or model projections

- **Spatial**: Getis-Ord Gi* based hot spots compare clusters of zip codes with four-week case prevalence higher than nearby zip codes to identify larger areas with statistically significant deviations
- **Temporal**: The cumulative case rate (per 100K) projected in March compared to those observed by county, which highlights temporal fluctuations that differ from the model's projections.
- Spatial hotspots were found sporadically across Virginia. Model overpredictions were seen in Southside, New River, and Crater. Lenowisco, Pittsylvania-Danville, and Eastern Shore saw more cases than expected.

Spatial Hotspots

Hospitalization Scenario Trajectory Tracking Which scenario from March 10 did each county track closest?

- A band of counties from Suffock to Franklin are tracking IncreaseTemp most closely.
- The northern Shenandoah Valley and areas near Bristol are tracking IncreasePerm more closely.
- Other areas of the Commonwealth are largely the same as last reported, mostly tracking Adaptive. ^{11-Aug-23}
 ²⁵

COVID-19 Broader Context

United States Hospitalizations

ue 15 22 29 06 12 29 26 00 10 17 Jan 30025 jul

	Number o	Number of States			
Status	Current	Last			
	Week	Month			
Declining	1	(1)			
Plateau	45	(51)			
Slow Growth	7	(1)			
In Surge	0	(0)			

US - Plateau

Around the World – Various trajectories

Confirmed cases

Hospitalizations

11-Aug-23

COVID-19 Genomic Update

SARS-CoV2 Variants of Concern

Emerging variants have potential to continue to alter the future trajectories of pandemic and have implications for future control

• Variants have been observed to: increase transmissibility, increase severity (more hospitalizations and/or deaths), and limit immunity provided by prior infection and vaccinations

https://clades.nextstrain.org

Omicron Updates*

- New lineage EG.5 up to 13.4 from 9%
- XBB.1.9* (EG.5^c) up to 20 from 17%
- XBB.1.16* holding steady at 28%, shifting internal structure
- XBB.1.5.72 new variant increasing to 3.8%
- New lineage XBB.2.3 down to 16.2 from 16.4%

*percentages are CDC NowCast Estimates

SARS-CoV2 Omicron Sub-Variants

BA.2.12.1

BA.4

BA.5

BO 1

BN.1

XBB

XBB.1.5

CH.1

XBB.1.9

XBB.1.16

XBB.2.3

EG.5

other

BA.2.75

B.1.1.529

BQ.1.1

1.0

0.8

0.2

0.0

023-03-15

04-01

BA.2.12.1

BA.4 BA.5

BA.2.75

B.1.1.529 BQ.1

BQ.1.1 BN.1

XBB.1.5

XBB.1.9

XBB.1.16 XBB.2.3

EG.5

other

CH.1

Prevalence

XBB

covSPECTRUM

VoC Polynomial Fit Projections Virginia

11-Aug-23

BIOCOMPLEXITY INSTITUTE

3-05-15

023-05-15

United States

.3.05-01

Virginia

SARS-CoV2 Omicron Sub-Variants

covSPECTRUM

Enabled by data from **GISAID**

2023 2023 2023 2023 2023

XBB.1.16* Relative growth advantage If variants spread pre-dominantly by local transmission across demographic group. (show more) Estimated proportion through time 60% 23% Current adv. ③ 23-24% Confidence int. 3 Mar 2023 May 2023 Jul 2023 *) Assumes that the current advantage is due to an intrinsic vir sion, immune escape, and International comparison United States × India × China × Japan × South Korea × XV 100% 75% 50% 25% 2023-02-27 2023-04-03 2023-05-08 2023-06-12 2023-07-3 Virginia - 29.2% (XBB.1.16 and sublineages) Last Sample: 2023-07-23 % X88.1.16 and su 70% 60% 50% 40% 30% 20% 10% 0.0%

MUNIVERSITY of VIRGINIA

Global SARS-CoV2 Variant Status

Positivity Rate for Pooled Samples, by Collection Week

North-America: 41657 sequences

https://cov.lanl.gov/components/sequence/COV/sparks.comp https://covid.cdc.gov/covid-data-tracker/#traveler-genomic-surveillance_

Global SARS-CoV2 Variant Status

https://cov.lanl.gov/components/sequence/COV/sparks.comp https://covid.cdc.gov/covid-data-tracker/#traveler-genomic-surveillance_

Pandemic pubs – Wastewater surveillance (1)

- North Carolina statewide analysis (62 weeks from 19 sites)
- Characterization around Delta and Omicron surges
- Findings:
 - Average lead time over cases 4 to 7 days
 - Correlations similar across normalizations and alignment
 - Novel algorithm (Covid-SURGE) combining indicators

Figure S1. North Carolina wastewat	er Monitoring Network sites analyzed
Manon Tuckaseigee Buncombe	Chaptel Hill - Carrboro Raleigh City of Wilson Greenville
Charlotte 1, 2	2, 3 Fayetteville - Rockfish
County with Wastewater Monitoring County Boundary	Laurinhurg New Hanover County (North) Wilmington City (North)

	True positive rate, %			Maximum false positive rate, %		
Period	Criteria 1, 2, and 3	Criteria 1 and 2	Criterion 1 only	Criteria 1, 2, and 3	Criteria 1 and 2	Criterion 1 only
Delta surge (n = 19 sites)	84	74	84	5	5	12
Omicron surge (n = 19 sites)	79	79	84	14	14	27
Across both surges (n = 38 periods)	82	76	84		7	15
-In 5 sites (10 periods) with small WWTPs (3,500 to 15,527 served)	80			3		
-In 10 sites (20 periods) with medium WWTPs (49,384 to 151,589 served)	75			10		
-In 4 sites (8 periods) with large WWTPs (173,000 to 550,000 served)	100			5		

https://www.pnas.org/doi/10.1073/pnas.2216021120

RESEARCH ARTICLE | POPULATION BIOLOGY | 👌

f 🎐 in 🖂 🧕

Separating signal from noise in wastewater data: An algorithm to identify communitylevel COVID-19 surges in real time

 Aparna Keshaviah
 Image: Constraint of the state o

Criterion 1: Was the wastewater concentration higher than any concentration measured over the past month? Criterion 2.1: Did the concentration represent a 100% increase or more from the previous sample? Criterion 2.2: Did the concentration represent a percent increase that was higher than any observed over the past month? Criterion 3: Did the wastewater concentration become detectable after one month of concentrations below the limit of detection?

Flag as a community-level surge if: [Criteria 1 and 2.1] OR [Criteria 1 and 2.2] OR [Criteria 3] were met

Challenges:

- Defining ground truth "surge" dates visual inspection + inflection points analyses on historical WW data
- Deriving best combination of indicators manual process optimized for Delta surge

MUNIVERSITY of VIRGINIA

Pandemic pubs – Wastewater surveillance (2)

- NWSS based study of 268 counties in 22 states (Jan-Sep 2022)
- Association with "high" community level of case/hospitalization rates
- <u>Findings</u>:
 - Metrics based on percentile (levels) and 15-d % change (trends)
 - High association in Q1 of 2022 AUC and logistic regression
 - Subsequent decline due to home testing and vaccinations

Challenges:

- Benchmarking for newer sites with little historical data
- Lower utility for predicting surges/transitions

MUNIVERSITY / VIRGINIA

https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2807632

Original Investigation | Public Health

ŀ

July 26, 2023

Use of Wastewater Metrics to Track COVID-19 in the US

Meri R. J. Varkila, MD¹; Maria E. Montez-Rath, PhD²; Joshua A. Salomon, PhD³; <u>et al</u>

\gg Author Affiliations | Article Information

JAMA Netw Open. 2023;6(7):e2325591. doi:10.1001/jamanetworkopen.2023.25591

Wastewater Percentile in Reference to Clinical Case Metrics in Large US Counties (n=38)

Jan-Mar 2022, AUC 0.95 (95% CI, 0.93-0.98)
 Apr-Jun 2022, AUC 0.9 (95% CI, 0.87-0.94)
 Jul-Sept 2022, AUC 0.83 (95% CI, 0.78-0.89)

Pandemic pubs – Wastewater surveillance (3)

- Biobot county-level data for 159 counties (Jun 2021 Jan 2023)
- Predicting weekly new hospital admissions using random forest
- Findings:
 - MAE within 4-6 patients/100k. NMAE within 0.2-0.4
 - RNA concentration most crucial explanatory factor

MD

• Progressively learning model performs better

Challenges:

- Unclear what the implication of MAE is for various counties
- Does not include other useful signals (e.g., cases, CLI)

https://www.nature.com/articles/s41467-023-40305-x

Article | Open Access | Published: 28 July 2023

Wastewater-based epidemiology predicts COVID-19induced weekly new hospital admissions in over 150 USA counties

Xuan Li, Huan Liu, Li Gao, Samendra P. Sherchan, <u>Ting Zhou</u>, Stuart J. Khan, <u>Mark C. M. van Loosdrecht</u> & <u>Qilin Wang</u> ⊠

Nature Communications 14, Article number: 4548 (2023) | Cite this article

National Modeling Hub Updates

Current COVID-19 Hospitalization Forecast

Statistical models for submitting to CDC COVID Forecasting Hub

 Uses a variety of statistical and ML approaches to forecast weekly hospital admissions for the next 4 weeks for all states in the US

Hospital Admissions for COVID-19 and Forecast for next 4 weeks (CDC COVID Ensemble)

Scenario Modeling Hub – COVID-19 (Round 17)

Collaboration of multiple academic teams to provide national and state-by-state level projections for 6 aligned scenarios

- Preliminary Results
- Round Designed to explore different seasonal vaccination levels and the impact of Immune Escape

Scenario Dimensions:

Immune Escape (IE):

Slower IE (20%/yr) vs. Faster IE (50%/yr)

Vaccination levels:

None vs. Vulnerable and 65 + vs. Broader population of eligible https://covid19scenariomodelinghub.org/viz.html

	 Low immune escape Immune escape occurs at a constant rate of 20% per year 	High immune escape Immune escape occurs at a constant rate of 50% per year
 No vaccine recommendation Uptake negligible or continues at very slow levels based on existing 2022 booster trends 	Scenario A	Scenario B
 Reformulated annual vaccination recommended for 65+ and immunocompromised Reformulated vaccine has 65% VE against variants circulating on June 15 Vaccine becomes available September 1 Uptake in 65+ same as first booster dose recommended in September 2021 Uptake in individuals under 65 negligible or continues to trickle based on 2022 booster trends 	Scenario C	Scenario D
 Reformulated annual vaccination recommended for all currently eligible groups Reformulated vaccine has 65% VE against variants circulating on June 15 Vaccine becomes available September 1 65+ uptake same as first booster dose recommended in September 2021 Coverage in individuals under 65+ saturates at levels of the 2021 booster (approximately 34% nationally) 	Scenario E	Scenario F

SMH – COVID-19 (Round 17) – Virginia Results

- To date, immune escape evolution has been slow. Booster campaign size remains unknown.
- Significant variation in Fall-Winter 2023 outlook across models

Incident Hospitalization JHU_IDD-CovidSP MOBS_NEU-GLEAM_COVID NotreDame-FRED UNCC-hierbin UVA-adaptive UVA-EpiHiper
 UTA-ImmunoSEIRS USC-SIkJalpha Ensemble_LOP

SMH – COVID-19 (Round 17) – Results – Booster Impact

- Models estimate potential reduction in hospitalizations ranging from 35% -15% for a whole population campaign and 8% - 18% for a 65+ only campaign
- Reductions in deaths are higher with ensemble estimates of 22% reduction for whole population and 18% reduction for 65+
- Reductions are smaller for the high immune escape scenarios

SMH – COVID-19 (Round 17) – Broader context

Across scenarios, COVID-19 is likely to be among the top 10 causes of mortality in the United States

v York Eimes	HEALTH Amid Signs of a Covid Uptick, Researchers Brace for the 'New Normal'
	The range of estimated deaths would place Covid somewhere between liver disease and diabetes for causes of death. "Even in that most optimistic scenario, we're getting into the range of mortality that we see for top 10 causes of death in the United
	States," Dr. Lessler said.
1	-

Key Takeaways

- Upticks in cases and hospitalizations hint at a late summer wave
- Hospitalizations have increased ~12% in recent week from prolonged plateau
- Other indicators from wastewater, ED visits show sustained growth through July
- Genomic surveillance hinting at the possible role of EG.5

- <u>Literature review</u>: Recent publications using wastewater surveillance
- National modeling updates

Questions?

Points of Contact

Bryan Lewis brylew@virginia.edu

Srini Venkatramanan srini@virginia.edu

Madhav Marathe <u>marathe@virginia.edu</u>

Chris Barrett ChrisBarrett@virginia.edu

Biocomplexity COVID-19 Response Team

Aniruddha Adiga, Abhijin Adiga, Hannah Baek, Chris Barrett, Golda Barrow, Richard Beckman, Parantapa Bhattacharya, Jiangzhuo Chen, Clark Cucinell, Patrick Corbett, Allan Dickerman, Stephen Eubank, Stefan Hoops, Ben Hurt, Ron Kenyon, Brian Klahn, Bryan Lewis, Dustin Machi, Chunhong Mao, Achla Marathe, Madhav Marathe, Henning Mortveit, Mark Orr, Joseph Outten, Akhil Peddireddy, Przemyslaw Porebski, Erin Raymond, Jose Bayoan Santiago Calderon, James Schlitt, Samarth Swarup, Alex Telionis, Srinivasan Venkatramanan, Anil Vullikanti, James Walke, Andrew Warren, Amanda Wilson, Dawen Xie

